CD4+ Natural Regulatory T Cells Prevent Experimental Cerebral Malaria via CTLA-4 When Expanded In Vivo
نویسندگان
چکیده
Studies in malaria patients indicate that higher frequencies of peripheral blood CD4(+) Foxp3(+) CD25(+) regulatory T (Treg) cells correlate with increased blood parasitemia. This observation implies that Treg cells impair pathogen clearance and thus may be detrimental to the host during infection. In C57BL/6 mice infected with Plasmodium berghei ANKA, depletion of Foxp3(+) cells did not improve parasite control or disease outcome. In contrast, elevating frequencies of natural Treg cells in vivo using IL-2/anti-IL-2 complexes resulted in complete protection against severe disease. This protection was entirely dependent upon Foxp3(+) cells and resulted in lower parasite biomass, impaired antigen-specific CD4(+) T and CD8(+) T cell responses that would normally promote parasite tissue sequestration in this model, and reduced recruitment of conventional T cells to the brain. Furthermore, Foxp3(+) cell-mediated protection was dependent upon CTLA-4 but not IL-10. These data show that T cell-mediated parasite tissue sequestration can be reduced by regulatory T cells in a mouse model of malaria, thereby limiting malaria-induced immune pathology.
منابع مشابه
Murine malaria is exacerbated by CTLA-4 blockade.
Cytolytic T lymphocyte-associated Ag-4 (CD152) is a negatively regulating molecule, which is primarily expressed on T cells following their activation. In this study, we have examined the role of CTLA-4 expression in experimental blood-stage malaria. Similar to human malaria, CTLA-4 is expressed on CD4(+) T cells of C57BL/6 mice after infection with Plasmodium berghei. A kinetic analysis reveal...
متن کاملImmunologic Self-Tolerance Maintained by Cd25+Cd4+Regulatory T Cells Constitutively Expressing Cytotoxic T Lymphocyte–Associated Antigen 4
This report shows that cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) plays a key role in T cell-mediated dominant immunologic self-tolerance. In vivo blockade of CTLA-4 for a limited period in normal mice leads to spontaneous development of chronic organ-specific autoimmune diseases, which are immunopathologically similar to human counterparts. In normal naive mice, CTLA-4 is constitutiv...
متن کاملBlockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo.
Naturally occurring CD4+ regulatory T cells (T(R)) that express CD25 and the transcription factor FoxP3 play a key role in immune homeostasis, preventing immune pathological responses to self and foreign Ags. CTLA-4 is expressed by a high percentage of these cells, and is often considered as a marker for T(R) in experimental and clinical analysis. However, it has not yet been proven that CTLA-4...
متن کاملCD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance
Cytotoxic T lymphocyte antigen-4 (CTLA-4) plays a critical role in negatively regulating T cell responses and has also been implicated in the development and function of natural FOXP3(+) regulatory T cells. CTLA-4-deficient mice develop fatal, early onset lymphoproliferative disease. However, chimeric mice containing both CTLA-4-deficient and -sufficient bone marrow (BM)-derived cells do not de...
متن کاملT Regulatory Cells Frequency During Maintenance Phase Chemotherapy for Pediatric Acute Lymphoblastic Leukemia
Background: Drugs used in cancer treatment specifically kill T regulatory cells. Objective: To determine different phenotypes of T regulatory cells during the maintenance phase chemotherapy for pediatric acute lymphoblastic leukemia (ALL). Materials: We evaluated the percentages of regulatory T cells by flow cytometry. Soluble CTLA-4 (sCTLA-4) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2010